Randpunkte
Schlagen Sie auch in anderen Wörterbüchern nach:
Komplexe Teilmengen — Der vorliegende Artikel über Komplexe Teilmengen beschreibt einige Mengenbegriffe, die häufig in Sätzen der Funktionentheorie verwendet werden, anschaulich im Kontext der komplexen Zahlenebene. Viele der hier erklärten Begriffe werden in einem… … Deutsch Wikipedia
Fläche (Topologie) — Als topologische Fläche bezeichnet man in der Topologie, einem Teilgebiet der Mathematik, eine 2 dimensionale Mannigfaltigkeit. Der Begriff ist eine Verallgemeinerung des Begriffs der regulären Fläche der Differentialgeometrie. Inhaltsverzeichnis … Deutsch Wikipedia
2-Mannigfaltigkeit — Als Fläche bezeichnet man in den mathematischen Teilgebieten der Differentialgeometrie und Topologie eine 2 dimensionale Mannigfaltigkeit. Beispiele im 3 dimensionalen Raum gewinnt man, wenn man die Oberflächen von Vollkörpern betrachtet.… … Deutsch Wikipedia
Gleichmäßig konvexer Raum — Gleichmäßig konvexe Räume sind eine in der Mathematik betrachtete spezielle Klasse normierter Räume. Diese Räume wurden 1936 von James. A. Clarkson mittels einer geometrischen Eigenschaft der Einheitskugel eingeführt. Die gleichmäßig konvexen… … Deutsch Wikipedia
Konvexitätsmodul — Gleichmäßig konvexe Räume sind eine in der Mathematik betrachtete spezielle Klasse normierter Räume. Diese Räume wurden 1936 von James. A. Clarkson mittels einer geometrischen Eigenschaft der Einheitskugel eingeführt. Die gleichmäßig konvexen… … Deutsch Wikipedia
Relativ kompakt — Relative Kompaktheit ist eine Abschwächung des topologischen Begriffs kompakt. Eine Teilmenge A eines topologischen Raumes X heißt relativ kompakt, wenn ihr topologischer Abschluss in X kompakt ist. A selbst muss dafür nicht kompakt sein. Man… … Deutsch Wikipedia
Relative Kompaktheit — Eine relativ kompakte Teilmenge ist ein Begriff aus der mathematischen Teilgebiet der Topologie. Es handelt sich um eine Abschwächung des topologischen Begriffs des kompakten Raums. Inhaltsverzeichnis 1 Definition 2 Andere Charakterisierungen 3… … Deutsch Wikipedia
Satz von Clarkson — Gleichmäßig konvexe Räume sind eine in der Mathematik betrachtete spezielle Klasse normierter Räume. Diese Räume wurden 1936 von James. A. Clarkson mittels einer geometrischen Eigenschaft der Einheitskugel eingeführt. Die gleichmäßig konvexen… … Deutsch Wikipedia
Satz von Milman — Gleichmäßig konvexe Räume sind eine in der Mathematik betrachtete spezielle Klasse normierter Räume. Diese Räume wurden 1936 von James. A. Clarkson mittels einer geometrischen Eigenschaft der Einheitskugel eingeführt. Die gleichmäßig konvexen… … Deutsch Wikipedia
Satz von Milman-Pettis — Gleichmäßig konvexe Räume sind eine in der Mathematik betrachtete spezielle Klasse normierter Räume. Diese Räume wurden 1936 von James. A. Clarkson mittels einer geometrischen Eigenschaft der Einheitskugel eingeführt. Die gleichmäßig konvexen… … Deutsch Wikipedia